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Abstract

We develop an Onsager–Machlup-type theory for nonequilibrium semi-Markov
processes. Our main result is an exact large-time asymptotics for the joint
probability of the occupation times and the currents in the system, establishing
some generic large deviation structures. We discuss in detail how the
nonequilibrium driving and the non-exponential waiting time distribution
influence the occupation-current statistics. The violation of the Markov
condition is reflected in the emergence of a new type of nonlocality in the
fluctuations. Explicit solutions are obtained for some examples of driven
random walks on the ring.

PACS numbers: 05.40.−a, 05.70.Ln

1. Introduction

Stochastic processes enter physics because of some reduced or incomplete description in terms
of variables whose states at earlier times do not uniquely determine their future states. Unless
we go to infinite scale separations and treat the relevant set of variables as, for example, in
the hydrodynamic limit, we expect that the reduced description allows for fluctuations and
randomness in the dynamics. We then speak about the mesoscopic level of description for
which reproducibility, which is so typical for the macroscopic world, is not available yet.

Furthermore, the resulting or effective descriptions in terms of stochastic dynamics cannot
always be reliably treated within the Markov approximation. That Markovian level would also
require particular time-scale separations such that the random evolution becomes essentially
memoryless. One easily loses the Markov property when the landscape of states and their
mutual connections get very complicated and some further coarse graining collects various
states into one, if only to simplify things. For example in the theory of spin glasses,
by combining various local minima of the free energy in one state and depending on the
various activation energies, one could effectively obtain stretched exponential waiting time
distributions. Or, for transport in strongly disordered systems, one can think that conduction
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is the result of a large series of hops, and the effective or total hopping rate must convolute
different exponentials, cf Mott’s variable range hopping [25]. For biophysical processes such
as in molecular motors or in ion channels one observes gate states that are either at the
beginning or at the end of a series of states that appear different only in some minor (internal)
rearrangement of molecules. The passage from entrance to exit through these internal and
largely hidden states can again give rise to nonexponential waiting time distributions. See
[17, 27, 29] for specific biomolecular realizations. In the examples that follow in section 5,
we present a very simple scenario of such a transport problem. The natural probabilistic
environment is then that of semi-Markov processes [16, 24]. Other scenarios can be due to
the random nature of energy levels such as conjectured in blinking quantum dots for which
the phenomenology suggests power-law waiting time distributions, [6].

The purpose of the present paper is to investigate the role of entropy fluxes and of
dynamical activity in the fluctuation theory for semi-Markov processes. Such a theory has
been investigated for Markov jump and Markov diffusion processes in the light of recent studies
in nonequilibrium statistical mechanics [5, 9, 10, 19]. It remains important to characterize the
fluctuation functionals in their physical role away from the strict Markovian context. Going
now beyond these Markov processes, we are especially interested in the influence and in the
role of the waiting time distribution in the dynamical fluctuations. After all, it parameterizes
a time-symmetric factor in the transition events, whose influence on the joint occupation and
current statistics needs to be understood. In this sense, we go here also beyond previous
approaches (e.g. [1]), where only the time-antisymmetric factor is considered. Our results
give detailed expressions for the fluctuation functionals and we interpret the role of the waiting
time distribution in them. We provide some more results in the regime of small fluctuations,
where we prove that the current and occupation fluctuations decouple close to equilibrium.
Here we also conclude that occupation fluctuations are in a sense more sensitive to non-
Markovian behavior than current fluctuations.

The next section contains a brief introduction to the world (and the notation) of semi-
Markov processes. Further elements of the semi-Markov theory are recalled in the appendix.
We then move to a general introduction on dynamical fluctuation theory, which contains our
main formulations of the fluctuation functionals for semi-Markov processes. Subsections
are devoted to some corollaries and to the interpretation of these functionals. That includes
a fluctuation symmetry for the entropy production and in section 4 the treatment of small
fluctuations around a nonequilibrium state. We end in section 5 with examples of semi-
Markovian transport in rings for which our results are getting fully explicit (for small
fluctuations). In a more specific example we also compute the generating function and
the first few cumulants for the current fluctuations.

2. Semi-Markov process

2.1. Definitions and notation

We consider jump processes on a finite space � with states denoted by x, y, . . . . The updating
is time-homogeneous and in continuous time. Semi-Markov processes are non-Poissonian
with a renewal property. This means that the probability of a jump from x to y at a certain time
depends only on the states x, y and the time t since the last jump occurred. More precisely, let
us denote Q(x, y, t) for the density of random transitions at time t from the state x to y. This
so-called semi-Markov kernel defines the process. Further it is useful to introduce

Q(x; t) =
∑

y

Q(x, y; t), p(x, y) =
∫ +∞

0
Q(x, y; t) dt, (1)
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which are respectively the waiting (or sojourn) time distribution in x and the transition
probabilities regardless of the waiting time, and

�(x; t) =
∫ +∞

t

Q(x; τ) dτ (2)

the probability that the system rests at state x for at least time t. In the following we always
assume that Q(x, y; t) = O(t−3−ε), ε > 0 asymptotically for t → +∞ so that the first and
the second moments with respect to the distributions Q(x, y; t) are finite. An important role is
played by the effective escape rate λ̄(x) from x defined as the reciprocal to the average sojourn
time in x, i.e.,

1

λ̄(x)
=

∫ +∞

0
τ Q(x; τ) dτ =

∫ +∞

0
�(x; τ) dτ. (3)

We say that the semi-Markov process enjoys time-direction independence when

Q(x, y; t) = p(x, y)Q(x; t). (4)

That is the case when the waiting time only depends on the present (and not on the future)
state. We make assumption (4) throughout the paper. See section 5.1 and (50) for a specific
(counter) example.

If the process is Markov then

Q(x, y; t) = p(x, y)λ(x) e−λ(x)t , �(x; t) = e−λ(x)t

with λ(x) being the escape rate from state x; the product w(x, y) = λ(x) p(x, y) is called the
transition rate. The effective escape rates are λ̄(x) = λ(x).

Further elements of the theory of semi-Markov processes are summarized in the appendix.
In particular, there we review a derivation of the (generalized) master equation, and its
formulation from the point of view of an embedded Markov chain. More details are of
course available in the literature (see e.g. [24, 27] for physics introductions).

2.2. Semi-Markov statistics

We add here some ingredients of the theory of semi-Markov processes that relate to the
statistical mechanics we are going for in the next section.

As explained in the appendix, see (A.6) and appendix A.3, the stationary distribution ρ

solves the stationarity equation∑
y

jρ(x, y) = 0, jρ(x, y) = ρ(x)λ̄(x)p(x, y) − ρ(y)λ̄(y)p(y, x), (5)

where jρ(x, y) is the stationary (probability) current from state x to y. We remark that this
equation coincides with the stationarity condition for a continuous time Markov process with
transition rates λ̄(x)p(x, y). In particular, the stationary distribution and currents depend on
the waiting time distributions only through the effective escape rates.

In this paper we go beyond the above stationary characterization of the semi-Markov
process and we want to understand the structure of fluctuations of the occupations and
currents around their stationary values, i.e., to develop a dynamical fluctuation theory for
these processes. For that we need more details about the process and a natural starting point
is the path-space distribution evaluating the plausibility of trajectories. This was the general
idea of Onsager and Machlup, [26]. Here we follow the strategy developed in [22] for Markov
systems.

A path ω = (xt )0�t�T specifies the sequence of states together with the jump times,

(x0, t1, x1, t2, . . . , xn−1, tn, xn), 0 � t1 < t2 < · · · tn � T , n = 1, 2, . . . (6)

3
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In order to construct a transient semi-Markov process started from a given initial distribution
μ at time zero, we make a ‘stationarity’ assumption about the history of the process in negative
times: we let the age of an initial configuration sampled from μ be random and conditionally
distributed according to the stationary process. Then the resulting path space distribution
Pμ(ω) giving the probability of a path ω has the density

dPμ(ω) = μ(x0)λ̄(x0)�(x0, x1; t1)Q(x1, x2; t2 − t1) · · ·
· · · Q(xn−1, xn; tn − tn−1)�(xn; T − tn) dt1 · · · dtn (7)

in which �(x0, x1; t1) = ∫ +∞
t1

Q(x0, x1; τ) dτ is the waiting time distribution for the initial
interval [0, t1], taking into account the random (stationarily distributed) age of the initial
configuration x0 at time zero when the process starts. Similarly, the last term, �(xn; T − tn),
comes out by integrating the waiting time distribution Q(xn; tn+1) over all possible times of
the first jump outside the time interval, tn+1 > T . Note that for μ = ρ the above construction
yields a stationary process.

The apparent similarity between the first and the last terms in (7), representing the past and
the future of the process, will be exploited next in the analysis of the time-reversal symmetry
and its breaking.

2.3. Time-reversal and local detailed balance

Any open system weakly coupled to its environment and being in thermal equilibrium with
the latter has to satisfy two general conditions that directly follow from first principles: (i) its
stationary distribution has the canonical form

ρ(x) = 1

Z
e−βU(x) (8)

with U being the energy of the system and β the bath temperature, and (ii) the (effective)
stochastic dynamics of the system is symmetric under time reversal. This symmetry can be
broken either by starting the dynamics from a nonstationary condition (i.e., in transients),
or provided the system is coupled to several thermal reservoirs mutually not in thermal
equilibrium (i.e., in transport processes). Then the dynamics of the system is no longer
time-reversal symmetric, however, this symmetry is broken in a very specific way: a natural
‘measure’ of irreversibility, see below, coincides with the change of entropy together in the
system and in the environment. For a general argument see, e.g., [20]. Next we specify these
considerations to the semi-Markov processes.

As a standard measure of irreversibility of the process we consider the path-dependent
quantity defined as the relative plausibility of a path with respect to its time-reversed
counterpart. Introducing the time-reversal θω of a path ω as (θω)t = ωT −t or

θω = (xn, T − tn, xn−1, T − tn−1, . . . , x1, T − t1, x0) (9)

cf (6), we define

Sμ(ω) = log
dPμ(ω)

dPμT
(θω)

= log
μ(x0)λ̄(x0)�(x0, x1; t1) · · · Q(xn−1, xn; tn − tn−1)�(xn; T − tn)

μT (xn)λ̄(xn)�(xn, xn−1; T − tn) · · · Q(x1, x0; t2 − t1)�(x0; t1)
, (10)

where μT is the distribution at time T as evolved from the μ at time zero, i.e., the solution
of the generalized master equation (A.6) or (A.8). As we restrict ourselves to the case of
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time-direction independence (4), equation (10) considerably simplifies to

Sμ(ω) = log μ(x0) − log μT (xn) +
n∑

i=1

log
λ̄(xi−1)p(xi−1, xi)

λ̄(xi)p(xi, xi−1)
, (11)

which is formally the same as one has for a Markov process with escape rates λ̄(x).
Assume first that the system is in thermal equilibrium with a heat bath. Then μ = ρ is

given by (8) and, by time reversibility, Sρ(ω) = 0, pathwise. This is equivalent to

log
λ̄(x)p(x, y)

λ̄(y)p(y, x)
= β [U(x) − U(y)], (12)

which is a generalized detailed balance condition (recall that in the Markov case, w(x, y) =
λ(x) p(x, y) are transition rates). Using (5), this is further equivalent to the absence of
all stationary currents, jρ(x, y) = 0. A rigorous argument for the equivalence between
the (generalized) detailed balance condition and the time reversibility of time-direction-
independent semi-Markov processes can be found in [8, 29]. We remark that the assumption
of time-direction independence is crucial here and cannot be easily abandoned.

To make a step beyond thermal equilibrium, observe first that the right-hand side of (12)
reads β times the heat flux (= entropy flux) into the heat bath, per a single transition x −→ y

in the system. This is clearly a global condition since all the local entropy fluxes derive from a
potential (or state quantity) βU . However, it has a natural local variant that only requires that

log
λ̄(x)p(x, y)

λ̄(y)p(y, x)
= entropy flux (x → y) (13)

no matter whether the entropy fluxes derive from a potential or not. Physically this corresponds
to a system coupled to several heat baths on nonequal temperatures, assuming that each
transition x −→ y is assisted by no more than one reservoir. The condition (13) is called
a local detailed balance. When modeling a particular physical process, we usually take the
individual entropy fluxes per each transition as a priori known, cf [3].

Under the local detailed balance condition, the path quantity Sμ is the sum of two
terms: of the difference − log μT (xn) + log μ(x0) which is to be understood as the variable
entropy increase in the system (one checks that its expectation equals the increase in Shannon
entropy), and of the total entropy flux into environment. The latter adds up contributions from
all transitions along the random trajectory.

Let us conclude here with two remarks: first of all, local detailed balance is not a
mathematical condition but rather a general guiding principle to be followed when modeling
an arbitrary open system driven out of equilibrium. It is mainly because of this that we restrict
ourselves to time-direction-independent processes. For time-direction-dependent processes
the assumption of local detailed balance does not seem to make sense. Furthermore, a direct
consequence of local detailed balance is a symmetry in the fluctuations of the time-integrated
entropy flux and also of the time-integrated currents (fluctuation theorems). It follows easily
from (11) via standard manipulations. See also [1, 14, 20] for another and more detailed
approach.

2.4. Resolution with respect to time-reversal

By construction, the entropy flux is intimately related to the time-antisymmetric part in the
logarithmic probabilities (or action). In order to separate more explicitly the time-symmetric
sector of fluctuations from the time-antisymmetric one, we will make a parametrization,

5
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inspired by the Markov case [22]: there one relates the transition rates w (x, y) to an equilibrium
reference process with rates w0(x, y) so that

w(x, y) = w0(x, y) e
1
2 G(x,y)

and G(x, y) = −G(y, x). (One checks that for a Markov processes such a representation
always exists.) By local detailed balance, G(x, y) can be seen as (β times) the work done by
an extra (with respect to the reference) force along the transition x → y.

As a generalization, we consider as a suitable equilibrium reference system another semi-
Markov process with the waiting time distributions Q0(x, y; t) = Q0(x; t)p0(x, y) such that
log [p0(x, y)/p0(y, x)] derives from a potential (the global detailed balance condition) and
that the waiting times of the original and the reference processes are related by3

Q(x, y; τ) = Q0(x, y; τ) e
1
2 G(x,y)+�0

G(x)τ (14)

for some G(x, y) = −G(y, x). The term �0
G(x) is a compensator fixed by the normalization

condition ∫ ∞

0
dτ Q(x; τ) = 1. (15)

Note that the parametrization (14) preserves the time-direction independence property. By
comparing with condition (13) of local detailed balance, the entropy flux per transition x −→ y

reads

log
λ̄(x)p(x, y)

λ̄(y)p(y, x)
= G(x, y) + u(x) − u(y) (16)

with some potential u that is explicitly computable. The process breaks the (global) detailed
balance unless G(x, y) also derives from a potential. We can therefore say that G(x, y) is the
forcing of the process. The decomposition of the entropy flux into potential and nonpotential
parts is hence fixed by comparing to a particularly chosen reference equilibrium.

Here is how we split the action into, respectively, a time-antisymmetric and a time-
symmetric part. From (7), the logarithmic density of our process with respect to the equilibrium
reference process P 0

μ is

log
dPμ(ω)

dP 0
μ(ω)

.= 1

2

∑
t�T

G(xt−, xt+) +
∫ T

0
dt �0

G(xt ), (17)

where
.= denotes that we have only taken the time-extensive part, and neglected temporal

boundary terms that will become redundant. In the first term the sum is over all jump times
in ω and by (16) it is equal to the total (i.e., time-integrated) entropy flux along path ω, for
the original process. The second term in (17) is manifestly time symmetric and it can be
understood as a time-undirected dynamical activity, or what we have called traffic in [19, 22]
(relatively with respect to the reference dynamics.).

The path-space average of (17) with respect to our process gives its dynamical or also
called, Kolmogorov–Sinai entropy—the relative entropy between the process and its reference
as distributions on paths. The decomposition (17) suggests to define two functionals which
take averages over the two terms in (17) separately. They will appear later; for the stationary
regime with stationary density ρ we divide (17) by T and let T → +∞ to write

1

T

〈
log

dPρ

dP 0
ρ

〉
−→ Ṡ

2
+ Ṫ

3 There are always infinitely many reference equilibrium processes such that this relation is true. Its satisfaction
makes the coming large deviation argument particularly convenient since the stochastic modification needed to make
a fluctuation typical will appear to have an identical form (see section 3.2).
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with

Ṡ =
∑
x,y

ρ(x) λ̄(x) p(x, y)G(x, y) = 1

2

∑
x,y

jρ(x, y)G(x, y)

Ṫ =
∑

x

ρ(x)�0
G(x).

(18)

The quantity Ṡ is the stationary average of the entropy flux per unit time. Note that it does
not depend on the particular choice of the reference equilibrium process as it is insensitive
to adding any potential difference to the driving G. The second component of the dynamical
entropy, Ṫ , measures the stationary dynamical activity in the sense of its ‘excess’ with respect
to the equilibrium dynamics taken as a reference.

3. Dynamical fluctuations

3.1. Scope

Equilibrium statistical mechanics provides us with a fluctuation theory through which the
thermodynamic potentials can also be understood as fluctuation functionals. Natural variables
for these functionals are usually the energy and particle densities, the magnetization or still
other characteristics of an equilibrium state. The precise formulation of all that is found in
the theory of large deviations as pioneered by Boltzmann, Planck and Einstein, which starts
from the identification of the thermodynamic entropy with the logarithm of a probability (see
e.g. [13, 18, 23]). We call this a static fluctuation theory where the main extensive parameter
is the spatial volume or the number of particles. That also has an extension to spatially
extended systems out of equilibrium but there is no simple way of determining the stationary
distribution. The difficulties with its direct determination can be overcome by analyzing
typical paths along which macroscopic fluctuations get spontaneously created, via exploiting
methods of analytical mechanics. The fluctuation functionals, often called nonequilibrium
free energies, are then found to solve an appropriate Hamilton–Jacobi equation [4].

In contrast, dynamical fluctuation theory deals with deviations from stationary behavior
that are observed over a large time period. This formulation is most useful for mesoscopic
systems in contact with large external reservoirs, where these fluctuations can be visible
on the level of the system. An immediate consequence is the variational characterizations
of the steady-state regime, much as the Gibbs variational principle characterizes thermal
equilibrium from the minimum of a free energy functional. Beyond that, the question is
once more whether the corresponding (now, dynamical) fluctuation functionals allow for a
natural physical interpretation, whether they can provide relations between quantities directly
accessible via measurement etc. Indeed, we recall that in equilibrium the Onsager–Machlup
theory constructs actions for the distribution of macroscopic histories that relate to response
coefficients and to dissipation functions, [26]. It would be most interesting to obtain an
extension of these functionals to reach domains further away from equilibrium and also in
situations different from those of fluctuating hydrodynamics.

Here we consider the set-up of semi-Markovian jump processes; the Markov case has
been discussed in [22]. The questions can however be put in a more general context, as now
follows.

We consider a path (or history or trajectory) and we observe the occupation of states
and the various transitions over states in some large time interval [0, T ]. More precisely,

7
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we first look at the fraction of time that the system spends in a state x ∈ � for one specific
path ω:

μT (x) := 1

T

∫ T

0
δ[xt = x] dt, (19)

where δ[xt = x] is 1 whenever xt = x and zero otherwise. Obviously, μT (x), x ∈ �, defines
a probability law but it is itself random as dependent on the stochastic trajectory ω. We assume
that these paths are drawn from the unique steady state with stationary density ρ. Then, as
time T → +∞ we have convergence of μT (x) to that ρ(x); that corresponds to an assumption
of ergodicity. Second we define the empirical densities of jumps between states x and y:

kT (x, y) := 1

T

∑
t�T

δ[xt− = x] δ[xt+ = y], (20)

where the sum is over all jump times and xt∓ are the configurations before and after the
jump, respectively. Again, that is a random quantity, typically converging for large T to
ρ(x)λ̄(x)p(x, y). Finally there is the empirical current

jT (x, y) = kT (x, y) − kT (y, x). (21)

The question of our dynamical fluctuation theory is to see and to physically understand the
asymptotic statistics for μT (x) and jT (x, y). What values do these assume and with what
probability? In other words, we take a probability law μ on � and a family j = (j (x, y))

with
∑

y j (x, y) = 0 and we ask for the steady state probability

P[μT � μ; jT � j ] ∝ e−T I (μ,j) (22)

as T → +∞, to realize these μ and j along the trajectories. We already suggest here
that there exists a rate function I (μ, j) which exactly picks up the leading order in T. That
rate function is the Legendre transform of the log-generating function of the occupation and
current statistics which would give more direct access to the various cumulants, but we will
not need these here. Our ambition here is not so much on the computational but rather on the
conceptual level, to understand what is the generic structure of I (μ, j) as well as its possible
physical configuration. In particular, we want to stress the similarities and the differences with
Markov processes, and to recognize the influence of modifying the waiting time distribution.
As we will see explicitly in the examples of section 5, both the current and the occupation
statistics do also pick up higher moments of the waiting time distribution, yielding markers
for non-Markovian behavior.

3.2. Joint occupation-current statistics

The fluctuation functionals appearing as rate functions, such as I (μ, j) in the exponent of
(22), are understood as relative entropy densities (see [11, 13, 28] for an introduction to the
systematic theory of large deviations). The relative entropy is between a modified and the
original process where the modified process is chosen such as to make the deviations typical.
In our case, we deal with temporal processes and the relative entropy density is like the rate
of change of dynamical entropies between the two processes. More specifically, to compute
P[μ, j ] := P[μT � μ; jT � j ], we define a new semi-Markov process in the following way:

Q∗(x; τ) = Q(x; τ) e�(x)τ

Z(x)
p∗(x, y) = Z(x)p(x, y) e

1
2 F(x,y),

8
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where F(x, y) = −F(y, x), with
∫ ∞

0 Q∗(x; τ)dτ = 1 and
∑

y p∗(x, y) = 1. Comparing
with (14) we see that Q∗ is of the form

Q∗(x; τ)p∗(x, y) = Q(x; τ)p(x, y) e
1
2 F(x,y)+�(x)τ

= Q0(x; τ)p0(x, y) e
1
2 (F (x,y)+G(x,y))+(�0

G(x)+�(x))τ. (23)

Hence, �0
F+G(x) = �0

G(x)+�(x). Most important now, we require that μ and j be stationary
in this new (modified) dynamics, i.e.,

j (x, y) = μ(x)λ̄∗(x)p∗(x, y) − μ(y)λ̄∗(y)p∗(y, x). (24)

In terms of these new quantities the joint fluctuation functional reads

I (μ, j) =
∑

x

μ(x)�(x) +
1

4

∑
x,y

j (x, y)F (x, y). (25)

Indeed, by using the explicit form (17) of the path-space measure we obtain

P[μ, j ] =
∫

dPμ(ω)δ[μT = μ, jT = j ] =
∫

dP ∗
μ(ω)

dPμ

dP ∗
μ

(ω)δ[μT = μ, jT = j ], (26)

where

log
dPμ

dP ∗
μ

(ω)
.=

n−1∑
i=1

log
Q(xi; ti+1 − ti)p(xi, xi+1)

Q∗(xi; ti+1 − ti)p∗(xi, xi+1)

= −
n−1∑
i=1

[
1

2
F(xi, xi+1) + �(xi)

]

= −T

4

∑
x,y

jT (x, y)F (x, y) − T
∑

x

μT (x)�(x).

Note that we have only written the extensive part in time, because we consider the large time
limit anyway. Continuing the computation, we now see that

P[μ, j ] = e− T
4

∑
x,y j (x,y)F (x,y)−T

∑
x μ(x)�(x)

∫
dP ∗

μ(ω)δ[μT = μ, jT = j ]. (27)

Finally, in the large time limit we have that
∫

dP ∗,T
μ (ω)δ[μT = μ, jT = j ] ≈ 1, because μ

and j are typical in the modified process. Therefore the probability of the fluctuations has the
asymptotic form:

P[μ, j ] ∝ e−T I (μ,j) (28)

with I (μ, j) given in (25).

3.3. Occupation statistics

A subquestion concerns the time-symmetric fluctuation sector; to understand the statistics of
the occupations alone. That means looking at (19) and writing similarly to (22),

P[pT � μ] ∝ e−T I (μ). (29)

To find the fluctuation functional I (μ) of only the occupation statistics, one can perfectly
repeat the argument for occupation-current statistics above, but this time it suffices to restrict
oneself to the class of modified processes driven by gradient forces, F(x, y) = V (y) − V (x).
Again, the point is that the potential V can be chosen such that it makes μ typical. The result
for the occupation fluctuation functional is

I (μ) =
∑

x

μ(x)�(x). (30)

9
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We see that � appears as the quantity to average over with μ, for expressing the rate at which
the system deviates from the μ-statistics. We can interpret �(x) as the excess traffic of the
modified process that makes μ, j typical, with respect to the original process:

I (μ) =
∑

x

μ(x)�(x) = ṪG+F (μ) − ṪG(μ), (31)

where the traffic functional is defined as

ṪG(μ) :=
∑

x

μ(x)�0
G(x) (32)

to be compared with (18). Using (15), we can deduce the response relation

∂ ṪG(μ)

∂G(x, y)
= −1

2
jμ,G(x, y) (33)

with

jμ,G(x, y) = μ(x)λ̄(x)p(x, y) − μ(y)λ̄(y)p(y, x) (34)

the expected transient current for a fluctuation μ in a dynamics as in (14) determined by G. In
this sense, the traffic can be understood as a potential with respect to the currents; cf similar
remarks for the Markov processes [19, 22]. However, in contrast with the latter, the traffic
(32) does not allow for a simple ‘kinematic’ interpretation in terms of an expected number of
jumps irrespectively of their direction.

3.4. Fluctuation symmetry

We now turn to the antisymmetric fluctuation sector, where we recover the fluctuation theorem,
cf [1, 14]. This is a direct consequence of the local detailed balance we have proposed in
section 2: indeed, local detailed balance dictates that (the extensive part of) the entropy
production is

S(ω)
.=

∑
t�T

G(xt−, xt+) = T

2

∑
x,y

jT (x, y)G(x, y), (35)

where jT is again the empirical current. As a consequence,

P[jT � j ] =
∫

dP(ω)δ[jT = j ]

=
∫

dP(θω) e
T
2

∑
x,y jT (x,y)G(x,y)δ[jT = j ]

= e
T
2

∑
x,y j (x,y)G(x,y)

∫
dP(ω)δ[jT = −j ]

which means that
P[jT � j ]

P[jT � −j ]
∝ e

T
2

∑
x,y j (x,y)G(x,y) (36)

again asymptotically for T → +∞, i.e., up to temporal boundary terms. Indeed and we already
concluded in (16), because of local detailed balance, G(x, y) is the generalized thermodynamic
force for the transition x −→ y in the entropy production. Taking the logarithm and the limit
T → +∞, formula (36) establishes a symmetry in the dynamical fluctuations of the entropy
production, cf [20].

For convenience, we add in the next section some more details concerning the physical
interpretation of various players in the dynamical fluctuation theory, along with the comparison
to the Markov case.

10
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3.5. Comparison with Markov processes

In the fluctuation functionals two new quantities appear: �(x) and F(x, y). The meaning of
F(x, y) can be made clear through local detailed balance (13). We already know that for the
original process, local detailed balance means that

λ̄(x)p(x, y)

λ̄(y)p(y, x)
= eσ(x,y), (37)

where σ(x, y) = G(x, y) + u(x) − u(y) is the entropy flux between system and reservoir per
jump from x to y (see (16). For the modified process we find

λ̄∗(x)p∗(x, y)

λ∗(y)p∗(y, x)
= eσ(x,y)+σex(x,y), (38)

where now σex(x, y) is the excess entropy flux of the modified process with respect to the
original process and is given by

σex(x, y) = F(x, y) + log

(
Z(x)λ̄∗(x)

λ̄(x)

)
− log

(
Z(y)λ̄∗(y)

λ̄(y)

)
. (39)

This means that, again up to some ‘potential difference’, (the last two terms in (39)) the term
F(x, y) is the extra force one adds to the system to make μ and j stationary. For a Markov
process this extra ‘potential’ becomes zero.

When the process is not Markov we still have that∑
x,y

j (x, y)F (x, y) =
∑
x,y

j (x, y)σex(x, y) (40)

whenever the stationarity condition
∑

y j (x, y) = 0 is fulfilled. In particular, this means that
the potential terms do not make a time-extensive contribution to the total entropy flux since
along any trajectory, the empirical currents jT (x, y) always satisfy that stationarity condition
up to corrections O(1/T ). In this sense, the second term in the joint fluctuation functional
I (μ, j) functional can really be called an excess entropy flux.

We have mentioned already above how the quantity �(x) appears. In the case of a Markov
process, �(x) is simply (minus) the excess escape rate of the modified process with respect
to the original process:

�(x) = λ(x) − λ̄∗(x). (41)

Combining (14) with (15), the �0
G(x) can be expanded around a Markov reference: e.g., by

writing

Q0(x, y; t) = w(x, y) e−λ(x)t

+∞∑
n=0

a(n)(x)
tn

n!
.

Then, the normalization (15) leads to

∑
y

w(x, y) e
1
2 G(x,y) = (

λ(x) − �0
G(x)

) (
+∞∑
n=0

a(n)(x)

(λ(x) − �0
G(x))n

)−1

∑
y

w(x, y) = λx

(
+∞∑
n=0

a(n)(x)

λn
x

)−1

.

Assuming that a(0)(x) = 1 and that the other a(n)(x), n � 1, are all small gives rise to an
expansion of �0

G(x) and of �(x) around the Markov case (41).

11
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4. Small fluctuations

In this section we examine the regime of small (or Gaussian) fluctuations, to say more about
the traffic and the influence of the waiting time distributions on the fluctuations. For this
we make a quadratic approximation to the various functionals but not (necessarily) around
equilibrium.

4.1. General

We let the fluctuations in the empirical distribution and the empirical current be parameterized
with some ε,

μ(x) = ρ(x)[1 + εμ1(x)] j (x, y) = jρ(x, y) + εj1(x, y),

where ρ(x) is the stationary measure, and jρ(x, y) is the stationary current. Also �(x) and
F(x, y) are now of order ε and to indicate that, we replace those with ε�(x) and εF (x, y). To
first order in ε, the conditions (23) and (24) become

j1(x, y) = ρ(x)p(x, y)

〈τ 〉x

[
μ1(x) +

( 〈τ 2〉x − 2〈τ 〉2
x

2〈τ 〉2
x

) ∑
z

p(x, z)F (x, z) +
1

2
F(x, y)

]

− ‘(x ←→ y)’ (42)

�(x) = − 1

2〈τ 〉x
∑

z

p(x, z)F (x, z), (43)

where

〈τ 〉x = 1

λ̄(x)
, 〈τ 2〉x =

∫ ∞

0
dτ τ 2 Q(x; τ). (44)

The fluctuation functional within the quadratic approximation is, cf (25),

I (μ, j) = ε2
∑

x

ρ(x)μ1(x)�(x) +
ε2

4

∑
x,y

j1(x, y)F (x, y). (45)

We observe that for small fluctuations, only the first and second moments of the waiting
time distributions contribute. Furthermore, the second term on the right-hand side of (42)
marks the difference with the Markov case since for the exponentially distributed waiting
times 〈τ 2〉x = 2〈τ 〉2

x . Due to the presence of this term beyond Markov, the functional I (μ, j)

no more splits into a sum over different transitions, hence, it is responsible for the emergence
of a new type of nonlocality in the fluctuations, not present under the Markov condition.

4.2. Close to equilibrium

In the case of a (global) detailed balance dynamics, we can prove that the occupation and
current fluctuations become decoupled within the quadratic approximation. Indeed, by using
the detailed balance condition, equation (42) can be explicitly solved for the extra forcing F:

F(x, y) = μ1(y) − μ1(x) +

( 〈τ 2〉x − 2〈τ 〉2
x

〈τ 〉x

)
�(x) −

(
〈τ 2〉y − 2〈τ 〉2

y

〈τ 〉y

)
�(y)

+
〈τ 〉x

ρ(x)p(x, y)
j1(x, y). (46)

12
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Substituted into equation (43), it yields

�(x) = − 1

2〈τ 〉x
∑

y

p(x, y)

[
μ1(y) − μ1(x) +

( 〈τ 2〉x − 2〈τ 〉2
x

〈τ 〉x

)
�(x)

−
(

〈τ 2〉y − 2〈τ 〉2
y

〈τ 〉y

)
�(y)

]
, (47)

where we have used that
∑

y j1(x, y) = 0. Clearly, � only depends on the occupations μ1

and not on the currents. That is why the occupation and the current fluctuations become
statistically independent, with the joint fluctuation functional being a sum of the occupation
functional and the current functional: I (μ, j) = I (μ) + I (j), where

I (μ) = ε2
∑

x

ρ(x)μ1(x)�(x) (48)

and

I (j) = ε2

4

∑
x,y

〈τ 〉x
ρ(x)p(x, y)

j1(x, y)2. (49)

Suppose now that the (global) detailed balance is slightly broken, in the following
sense: take p(x, y) = p0(x, y) + εp1(x, y), where p0(x, y) are detailed balanced transition
probabilities. As the functionals (48) and (49) are already of order ε2, the small deviation
from detailed balance will not contribute. We still have therefore uncorrelated statistics for
the occupations and currents in the close-to-equilibrium regime, and the marginal fluctuation
functionals (48) and (49) remain unchanged.

We remark that whereas the current statistics has exactly the same form as for a Markov
process with escape rates λ(x) = 1/〈τ 〉x , we observe a difference in the occupation statistics.
As the difference between semi-Markov and Markov processes lies in the time-symmetric part
of the path-space probabilities, it should come as no surprise that the occupation statistics are
more sensitive to details of the waiting time distribution than are the current statistics.

5. Examples

First we give an example of the semi-Markov process obtained from a Markov model via
coarse graining. Its generalized version is then used to illustrate our dynamical fluctuation
theory.

5.1. Semi-Markov from Markov

Consider a Markov random walk as in figure 1, with three kinds of states xi, yi and zi for
i = 1, . . . , N on a ring (N + 1 ≡ 1).

x
y

zi

i

i

xi+1xi−1

zi+1

yiyiyi−1

Figure 1. Markov random walk with ‘hidden’ states.
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x

y

z

i

i

i

ci

Figure 2. Coarse graining of the states.

As the arrows in figure 1 suggest, the only transitions allowed are xi → yi , xi → zi ,
yi → xi+1 and zi → xi−1, whereas all the others are forbidden. This is a model of a one-
dimensional random walk with ‘hidden’ states: the particle at state xi can go ‘to the right’
(from xi to xi+1) through the ‘hidden’ state yi only, and ‘to the left’ through zi only. More
specifically, we fix λx, λy, λz > 0 and we set the Markov transition rates to

W(xi → yi) = pλx W(xi → zi) = qλx

W(yi → xi+1) = λy W(zi → xi−1) = λz

for some p + q = 1. The rates do not depend on the position i on the ring.
Since every pair of ‘hidden’ states yi and zi has the unique precursor xi, we can follow a

simple coarse-graining procedure: for each i to take together all three states xi, yi and zi (see
figure 2). By construction, the coarse-grained random walk on the new ‘block’ states, denoted
by ci, is a semi-Markov process.

We can calculate the probability that the walker occupies ci for a time τ > t before
jumping to ci+1, and its time derivative is the density Q(ci, ci+1; t). Exploiting that the only
possibility of going from ci to ci+1 (or ci−1) is via the ‘hidden’ state yi (or zi), the waiting time
distributions (1) read

Q(ci, ci+1; t) =
∫ t

0
dτ pλx e−λxτ · λy e−λy(t−τ) = pλxλy

e−λy t − e−λx t

λx − λy

Q(ci, ci−1; t) = qλxλz

e−λzt − e−λx t

λx − λz

.

It is clear that Q(ci, ci+1; t) and Q(ci, ci−1; t) determine the dynamics of the new stochastic
process which is semi-Markov: the updates are decided by the immediate history but the
waiting time distribution is not exponential and it can depend on the specific transition.
Observe also that∫ +∞

0
dtQ(ci, ci+1; t) = p,

∫ +∞

0
dtQ(ci, ci−1; t) = q,

which indicates a driving whenever p �= q. In all events the stationary distribution is uniform
over the ring.

Let us investigate two different limits of this example. First let λx → +∞. In this limit
we obtain

Q(ci, ci+1; t) = pλy e−λy t , Q(ci, ci−1; t) = qλz e−λzt . (50)

14
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Unless λy = λz, the process is not Markov. In general it is semi-Markov with direction-
dependent waiting time distribution.

Second, we consider the limits λy → λx and λz → λx together. The resulting transition
densities are

Q(ci, ci+1; t) = p λ2
x t e−λx t , Q(ci, ci−1; t) = q λ2

x t e−λx t . (51)

Here the time dependence of the two clocks going to the left or to the right are the same. In
particular, it does not matter whether the walker first picks a direction or just picks the first
clock that rings. Still it is not a Markov process, because the waiting time distributions of
the clocks are not exponential. This process is a semi-Markov with waiting time-direction
independence.

5.2. Continuous time random walk on the ring

The semi-Markov model obtained in the previous section is an example of continuous time
random walk (CTRW). In this section we give some explicit solutions to equations that appear
in dynamical fluctuation theory, for a CTRW on the ring.

We continue with states that represent the sites on a ring of length N, with translation
invariance as in the above explicit example. Let the transition densities be

Q(x, τ) = Q(τ), p(x, x + 1) = p, p(x + 1, x) = q.

We restrict to the small fluctuations as in section 4. Because the current fluctuation j = jρ +εj1

has to satisfy
∑

y j (x, y) = 0, we see that j1(x, x + 1) + j1(x, x − 1) = 0, and therefore
j1(x, x + 1) = j1 is a constant on the ring.

Equations (42) become

j1 = 1

N〈τ 〉 [pμ1(x) − qμ1(x + 1) − AF(x + 1, x + 2) + BF(x, x + 1) − AF(x − 1, x)]

�(x) = 1

2〈τ 〉 (qF (x − 1, x) − pF(x, x + 1)), (52)

where the constants A and B are

A = pq

( 〈τ 2〉
2〈τ 〉2

− 1

)

B = (p2 + q2)〈τ 2〉
2〈τ 〉2

− (p − q)2

2
.

The fluctuation functional reads

I (μ, j) = ε2

N

∑
x

μ1(x)�(x) +
ε2j1

2

∑
x

F (x, x + 1). (53)

The second term on the right-hand side is easily computed by summing (52) over all x. Using
that

∑
x μ1(x) = 0 we obtain

∑
x

F (x, x + 1) = N2〈τ 〉j1

B − 2A
.

Defining now f (x, x+1) by F(x, x+1) = f (x, x+1)+ N〈τ 〉j1

B−2A
, we see that

∑
x f (x, x+1) = 0,

hence, f is of the gradient form f (x, x + 1) = V (x + 1) − V (x). Substituting in (52), we
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obtain

0 = 1

N〈τ 〉 [pμ1(x) − qμ1(x + 1) − Af (x + 1, x + 2) + Bf (x, x + 1) − Af (x − 1, x)]

�(x) = 1

2〈τ 〉 (qf (x − 1, x) − pf (x, x + 1)) + (q − p)
N2〈τ 〉j1

B − 2A

=: �′(x) + (q − p)
N2〈τ 〉j1

B − 2A
. (54)

Finally, (53) takes the form

I (μ, j) = I (μ) + I (j)

= ε2

N

∑
x

μ1(x)�′(x) +
ε2N2〈τ 〉j 2

1

2(B − 2A)
. (55)

So there is a decoupling of current and occupation statistics. Whereas, in general, this occurs
only for small fluctuations and close to equilibrium, here it is apparently valid arbitrarily far
from equilibrium. The fundamental reason lies in the translation-invariance property of the
dynamics.

Let us further examine the statistics of current fluctuations, exploiting that the functional
I (j) is explicit. Using that in the Markov case 2(B − 2A) = 1, we can write in general
I (j) = C−1IM(j), with IM(j) being the fluctuation functional for a Markov process with the
same average waiting time 〈τ 〉, and with C given by

C = 1 + (2p − 1)2

(
Var(τ )

〈τ 〉2
− 1

)
, (56)

where Var(τ ) = 〈τ 2〉 − 〈τ 〉2 is the variance of the waiting time distribution. Thus C is a
correction factor with respect to the Markov case; one checks that C � 0. We also see that the
bigger the variance of the waiting times, the smaller C−1, and therefore the I (j) will become
flatter. We remark that in detailed balance (i.e. for p = 1

2 ), we have that C = 1. So in this
case one has the same fluctuation functional as in the Markov case, as it should be according
to (48). Furthermore, there is a fundamental difference between the cases Var(τ ) > 〈τ 〉2 and
Var(τ ) < 〈τ 〉2 (i.e., whether the variance of the waiting times is bigger or smaller than in the
Markov case). When the variance is smaller than in the Markov case, C as a function of p
tends to get bigger when p gets closer to 0 or 1. In the other case, C becomes smaller when p
is closer to 0 or 1.

Finally we can compute the occupation statistics I (μ). Formulae considerably complicate
however when N is large and that is why we choose to be explicit only for N = 3 (a ring with
three sites). Similarly as for I (j) we can write I (μ) = C ′−1IM(μ), with

IM(μ) = ε2

3〈τ 〉
∑

x

(pμ1(x) − qμ1(x − 1))2

= 2ε2

3〈τ 〉 (1 + p2 − p)[μ1(1)2 + μ1(2)2 − μ1(1)μ1(2)]

using that μ1(1) + μ1(2) + μ1(3) = 0. The C ′ is given by

C ′ = 1 + (p2 − p + 1)

(
Var(τ )

〈τ 〉2
− 1

)
. (57)

Also here, the bigger the variance of the waiting times, the flatter the fluctuation functional
becomes. However, in the detailed balance case the functional does not reduce to the Markov
form. This is indeed what we concluded in the discussion after (48). There is another
difference with the current fluctuations: as a function of p, the fluctuation functional gets
flatter when p gets closer to 0 or 1, independent of the sign of Var(τ )/〈τ 〉2 − 1.
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5.3. Generating function approach to current statistics

Finally we consider (arbitrary) current fluctuations on the ring and compare two possible
approaches. As explained in the present paper, one way of computing this is via contraction
of the joint fluctuation functional:

I (j) = inf
μ

I (μ, j). (58)

As is however often the case, explicit computations proceed more easily via the generating
function

G(v) = 〈eT vjT 〉. (59)

Defining g(v) = limT →∞ 1
T

log G(v), one can prove that g(v) exists and is the Legendre
transform of the fluctuation functional I (j):

g(v) = sup
j

{vj − I (j)} (60)

and vice versa. It generates the current cumulants (see e.g. [2, 7, 9] for applications to
nonequilibrium interacting particle systems). By using the Laplace transform as in (A.7), with
Q̃(s) the Laplace transform of Q(τ), we solve the equation

Q̃(s∗) = 1

p ev + q e−v
(61)

for s∗; then g(v) = s∗.
As an example, consider the waiting time distribution

Q(τ) = 1

�(a)
τ a−1λa e−λτ (62)

for λ > 0, a � 1. (Note that a = 1 represents the Markov case.) For this distribution,

m = 〈τ 〉 = a

λ
and σ 2 = Var(τ ) = a

λ2

and (61) becomes

Q̃(s∗) =
(

λ

λ + s∗

)a

= (p ev + q e−v)−1 (63)

or,

g(v) = λ(p ev + q e−v)
1
a − λ. (64)

By taking derivatives at v = 0 we obtain the next explicit expressions for the current moments:

jρ = p − q

m

1

T
〈(jT − jρ)

2〉 = 1

m

(
σ 2

m2
− 1

)
(p − q)2 +

1

m

1

T
〈(jT − jρ)

3〉 = 1

m

(
σ 2

m2
− 1

)(
σ 2

m2
− 2

)
(p − q)3 +

1

m

(
3σ 2

m2
− 2

)
(p − q).

It is interesting to see that the variance of the currents picks up a term depending on the driving
p−q and that this term is only non-zero if the process is non-Markov. This is indeed what we
expect from the discussions about the small fluctuations regime, where we found that in, or
close to, the detailed balance case the current fluctuations are quite insensitive to changes in
the variance of the waiting times.
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Appendix A. More background on semi-Markov processes

We give some more details on the structure of semi-Markov processes. (See [24, 27] for
excellent introductions.)

A.1. Embedded Markov chain

To have a good intuition of a semi-Markov process it is worth seeing it as a discrete time Markov
chain to which specific waiting times are added. In particular, the discrete sequence of states
in the semi-Markov process is drawn from the Markov chain with transition probabilities
p(x, y): if at time τ0 the state x0 was created, then we choose the next state x1 with probability
p(x0, x1). Second, we have to decide how long has been the waiting between the creation of
x0 and the creation of x1. For that we need the waiting time distribution: let its distribution
(i.e., the integrated probability density) be 1 − �(x,y;t)

p(x,y)
, so that the (total) distribution function

for the random waiting time τ1 − τ0 between the creation of x0 and the creation of x1, is
p(x0, x1) − �(x0, x1; t).

A semi-Markov process is thus constructed most elegantly from a Markov renewal process
(xn, τn)n�0 for xn ∈ � and τ0 � τ1 � · · · � τn � · · · denoting jump times, with transition
probabilities

P[xn+1 = y, τn+1 − τn � t |xn, τn, xn−1, τn−1, . . . , x0, τ0] = p(xn, y) − �(xn, y; t), n, t � 0

satisfying all of (1) with Q(x, y; t) = − d
dt

�(x, y; t).
The process (xn) with transition probabilities p(x, y) is called the embedded Markov

chain. For the randomness in time, we define the jump counting process ν(t), t � 0 of the
total dynamical activity up to time t,

ν(t) = sup{n � 0 : τn � t}
which we assume is finite with probability 1. The semi-Markov process corresponding to that
renewal process is then defined by

x(t) = xν(t), t � 0,

where the state at time t is just equal to xn of the embedded Markov chain, if ν(t) = n. For a
Markov process ν(t) is just a Poisson process.

A.2. Master equation

An intuitive way of deriving a generalization of the master equation for semi-Markov processes
is to consider the corresponding Markov process (xt , τt )0�t�T , where xt is the configuration
of the semi-Markov process at time t and τt is the time that the system has been in this
configuration since its last jump.

With this in mind we can write the transition probabilities for the process (xt , τt ),

P(x, τ ; y, τ ′) = Prob(xt+dt = y, τt+dt = τ ′|xt = x, τt = τ). (A.1)

We then have that with λ(x; τ) = Q(x; τ)/�(x; τ),�(x; τ) = ∑
y �(x, y; τ), λ(x, y; τ) =

Q(x, y; τ)/�(x, y; τ),
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(i) P(x, τ ; x, τ + dt) = 1 − λ(x, τ ) dt + o(dt);
(ii) P(x, τ ; y, 0) = λ(x, y; τ) dt + o(dt)

and other transition probabilities are of order o(dt).
Let us now look at the evolution of probability densities μt(x, τ ) in this dynamics. It is

easily seen that for τ �= 0,

μt+dt (x, τ ) = μt(x, τ − dt)[1 − dt λ(x; τ − dt)] (A.2)

from which it follows that
∂μt(x, τ )

∂t
= −∂μt(x, τ )

∂τ
− μt(x, τ )λ(x; τ) (A.3)

and for τ = 0,

μt(x, 0) =
∫ ∞

0
dτ

∑
y

μt (y, τ )λ(y, x; τ). (A.4)

Because we are mainly interested in the process xt (which is no longer Markov), we integrate
over the waiting times τ : μt(x) = ∫ ∞

0 dτ μt (x, τ ). Doing that for (A.3) we obtain (assuming
that μt(x,∞) = 0)

∂μt(x)

∂t
= μt(x, 0) −

∫ ∞

0
μt(x, τ )λ(x; τ) dτ. (A.5)

Using (A.4) we thus arrive at a generalized master equation:
dμt(x)

dt
=

∫ ∞

0
dτ

∑
y

[μt(y, τ )λ(y, x; τ) − μt(x, τ )λ(x, y; τ)] = −
∑

y

jt (x, y), (A.6)

which also defines the currents jμ(x, y).
There is obviously a downside to this equation, and that is that we need knowledge of

μt(x, τ ) to compute the time derivative of μt(x). There is a way to circumvent this problem
by using the Laplace transform.

Taking the Laplace transform of a function f as

f̃ (s) =
∫ ∞

0
f (t) e−st dt (A.7)

and putting μ0(x, τ ) = μ0(x)λ̄(x)�(x, τ ) it can be proven that∫ ∞

0
dτ μT (x, τ )λ(x, y; τ) =

∫ T

0
μt(x)ϕ(x, y; T − t) dt

+ μ0(x)

(
λ̄(x)p(x, y) −

∫ T

0
dt ϕ(x, y; t)

)
with ϕ having the Laplace transform

ϕ̃(x, y; s) = Q̃(x, y; s)

�̃(x; s)
.

We substitute that in the master equation:
dμT (x)

dT
=

∑
y

∫ T

0
dt{[μt(y) − μ0(y)]ϕ(y, x; T − t) − [μt(x) − μ0(x)]ϕ(x, y; T − t)}

+
∑

y

[μ0(y)λ̄(y)p(y, x) − μ0(x)λ̄(x)p(x, y)]. (A.8)

The function ϕ represents the memory of the semi-Markov process. The faster ϕ(x, y; t)

decays to zero, the less memory we have. For example, for a Markov process with escape rates
λ(x) we find that ϕ(x, y; t) = λ(x)p(x, y) δ(t). Indeed a Markov process has no memory
(and the master equation for Markov processes arises as a special case of this generalized
equation).
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A.3. Stationarity

Stationarity of the semi-Markov process means that path-space averages of time-independent
observables are still time independent. But as above we can use the corresponding Markov
process (xt , τt )0�t�T . Stationarity of the semi-Markov process is ensured by demanding
that μt(x, τ ) := ρ(x, τ ) is stationary. Solving then (A.3) with the LHS zero, and using
ρ(x) = ∫ ∞

0 dτ ρ(x, τ ), we obtain ρ(x, τ ) = ρ(x)λ̄(x)�(x; τ). This means that if we know
that the system is in a configuration x, then the probability that it has been there already for a
time τ is equal to λ̄(x)�(x; τ).

The stationary measure of our semi-Markov process is ρ(x) ∝ π(x)

λ̄(x)
where π(x) is the

stationary measure of the embedded Markov chain. We write

ρ(x) = 1

ξ

π(x)

λ̄(x)

for some normalization ξ , the overall average waiting time. In this notation, we see that the
stationary currents are

jρ(x, y) = π(x)p(x, y) − π(y)p(y, x)

ξ
(A.9)

and that they are zero iff the embedded Markov chain is a detailed balance. That however
is only equivalent with time-reversal invariance if the semi-Markov process is time-direction
independent (see e.g. [8, 27, 29]).
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